Exercice* 0 : On considère le programme de calcul suivant :

- * Choisir un nombre décimal
- ★ Ajouter 1,2
- * Multiplier la somme obtenue par 10
- * Soustraire 12
- * Annoncer le résultat
 - 1. Faire fonctionner ce programme avec 3 nombres différents.
 - 2. En déduire une conjecture à propos de ce programme de calcul.

Exercice** 1: Voici un programme de calcul:

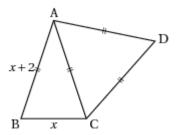
Choisir un nombre, prendre son double et ajouter 1. Multiplier le résultat par 3, ensuite soustraire le double du nombre de départ. Enfin, soustraire 3 au résultat précédent.

- 1. Effectuer ce programme de calcul en prenant 2 comme nombre de départ.
- 2. Effectuer ce programme de calcul en prenant 5 comme nombre de départ.
- 3. Appelle x le nombre de départ. Exprimer le résultat final R en fonction de x. Développer et réduire l'expression trouvée.
- 4. D'après le résultat précédent, que fait réellement ce programme de calcul?

Exercice* 2: Trouver une formule en utilisant la lettre x pour éviter d'écrire tous les calculs suivants :

 $(2+3) \times 2$; $(3+3) \times 3$; $(4+3) \times 4$; $(5+3) \times 5$; $(6+3) \times 6$.

Exercice* 3: On donne l'égalité:


$$a(2a+1) - 3 = 5(a-1) + a$$

Est-elle vérifiée lorsque a=2?

Exercice** 4: Cinq triangles isocèles identiques ont leur côtés égaux qui mesurent 3,5 cm. Leurs bases est b, une longueur en centimètre.

- 1. On appelle S la somme de tous les côtés de tous ces triangles. Exprimer S en fonction de b.
- 2. Sachant que S vaut 45 cm, trouver le nombre b et construire un de ces triangles en vraie grandeur.

Exercice** 5 : La figure ci-dessous n'est pas représentée à l'échelle et ne sert qu'à indiquer la position des différents points.

ABC est un triangle isocèle en A tel que la base BC=x cm.Le côté [AB] mesure 2 cm de plus que [BC], on a donc : AB=x+2 cm. ACD est un triangle équilatéral construit à partir du segment [AC].

- 1. Exprime le périmètre p du quadrilatère ABCD, en fonction de x.
 - Réduis l'expression trouvée.
- 2. (a) Construis la figure en vraie grandeur en prenant x = 3 cm.
 - (b) Construis (d_1) , la médiane issue de C dans le triangle ABC.
 - (c) Contruis (d_2) , la hauteur relative à [CD] dans le triangle ADC.

Exercice 6 :** Cinq amis se rendent au cinéma. Trois d'entre eux bénéficient d'un tarif réduit, les deux autres devant payer le tarif normal. On note r, le tarif réduit (en \in) et n, le tarif normal (en \in).

- 1. Exprimer, en fonction de r et de n, le prix total à payer par les cinq amis.
 - Donner une écriture simplifiée.
- 2. Calculer le prix à payer si $r = 4,50 \in$ et $n = 6 \in$.
- 3. En fait, les cinq amis paient au total 25 €.
 - (a) Peut-on avoir r=5 \in et n=5,50 \in ? Justifier la réponse.
 - (b) Peut-on avoir r=3 \in et n=8 \in ? Justifier la réponse.
 - (c) Trouver deux autres prix possibles qui conviennent.

Exercice** 7: On considère le schéma suivant où a désigne la longueur d'un côté de chaque carré composant la grille.

- 1. Exprimer la longueur de la ligne brisée noire en fonction de a.
- 2. Calculer cette longueur lorsque $a=2,5\,\mathrm{cm}$ puis lorsque $a=0,5\,\mathrm{cm}$ enfin lorsque $a=3\,\mathrm{cm}$.
- 3. Trouver la valeur de a pour que la ligne mesure $168\,\mathrm{cm}$
- 4. Trouver la valeur de a pour que la ligne mesure $173,2~\mathrm{cm}$.