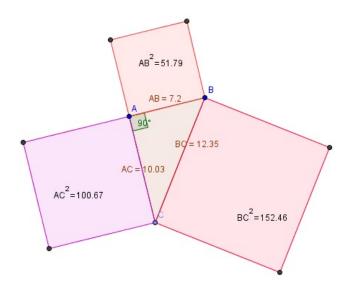

Ge&Gebra

Activité: Pythagore

* Lancer le logiciel GeoGebra.


* Construire la droite perpendiculaire à (AB) et passant par A à l'aide de l'icône

- ★ Placer un point C sur la perpendiculaire, à l'aide de l'icône
- * Masquer les deux droites construites en faisant un clique droit et en décochant « Afficher l'objet ». Il reste les 3 points

A, B et C. Tracer alors le triangle ABC à l'aide de

- \star Marquer, dans le sens des aiguilles d'une montre, l'angle \widehat{BAC} en utilisant :
- * Déplacer les points A, B et C et vérifier que le triangle reste rectangle en A, à l'aide du curseur
- * Afficher les longueurs des côtés du triangle ABC (cliquer avec le bouton droit de la souris sur chaque côté, aller sur "Propriétés", renommer les segments et cocher afficher "Nom & Valeur").
- ★ À l'aide de ¹—, tracer trois polygones réguliers à quatre côtés (autrement dit 3 carrés : le premier de côté [BC], le deuxième de côté [AC] et le troisième de côté [AB]).
- * Afficher les aires des trois susdits polygones à l'aide de
- \star Dans la zone texte remplacer "aire" (du carré de côté [AB]) par " AB^2 ". Faire de même pour les deux autres carrés.

 \star Aller sur affichage dans la barre d'outils et afficher le tableur afin de vous aider à calculer $AB^2 + AC^2$.

	8			
	9	AB2+AC2=	=AB² + AC²	
1	10			

⋆ Compléter le tableau suivant pour cinq triangles différents obtenus en déplaçant les points A, B et C.

Triangle ABC rectangle en A	AB	AC	BC	$AB^2 + AC^2$	BC^2
Triangle 1					
Triangle 2					
Triangle 3					
Triangle 4					
Triangle 5					

★ Quelle conjecture peut-on faire?.....